

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

FURTHER MATHEMATICS

9231/11

Paper 1 Further Pure Mathematics 1

October/November 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each guestion or part guestion is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

1	The matrix M is given by $M =$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} b \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix}$	0	, where a and b are positive constants.
		١U	1/\U	1/	

(a)	The matrix M	represents a se	equence of two	geometrical	transformations.
٠,	,		TOPIODOTION OF D		7001110011001	VI 001101011110001011

State the type of each transformation, and make clear the order in which they are applied.	[2]
Strotch parrialed to x-asis, s.c b. shear	
parvaled to x-axis, s.c. a.	

The unit square in the x-y plane is transformed by \mathbf{M} onto parallelogram OPQR.

Find, in terms of a and b, the matrix which transforms parallelogram $OPQR$ onto the unit square	re 2
$M = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$	
$= \begin{pmatrix} a & b \\ D & l \end{pmatrix}$	
dd(M) = a	
$M^{-1} = \frac{1}{det(M)} \begin{pmatrix} 1 & -b \\ 0 & a \end{pmatrix}$	
det(m) (O a)	
= 1 / 1 - 6]	
$=\frac{1}{a}\left(\begin{array}{cc}1-b\\0&a\end{array}\right)$	

It is given that the area of OPQR is 2 cm^2 and that the line x+3y=0 is invariant under the transformation represented by \mathbf{M} .

^ ^	
a = 2	
243y=0	
$y = -\frac{1}{3}\chi$	
3	
(a b) / K) / K)	
$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2}k \\ -\frac{1}{2}k \end{pmatrix} = \begin{pmatrix} \frac{1}{2}k \\ -\frac{1}{2}k \end{pmatrix}$	
$\begin{pmatrix} 0 & 1 & 1 & -\frac{2}{3}k \end{pmatrix} \begin{pmatrix} -\frac{2}{3}k \end{pmatrix}$	
$(ar - \frac{1}{2}br)$	
$\left(\begin{array}{c} ak - \frac{1}{3}bk \\ -\frac{1}{3}k \end{array}\right) = \left(\begin{array}{c} k \\ -\frac{1}{3}k \end{array}\right)$	
$\frac{1}{3}k$	
ar - 1br = r	
$ak - \frac{1}{3}bk = k$ $2k - \frac{1}{3}bk = k$	
$-\frac{1}{3}b=-1$	
3	
b = 3	
5-3	

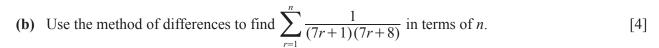
2 (a) Use standard results from the List of Formulae (MF19) to show that

$$\sum_{r=1}^{n} (7r+1)(7r+8) = an^{3} + bn^{2} + cn,$$

	where a	, b and c are constant	s to be determined	
--	-----------	----------------------------	--------------------	--

=	S 14912+63	5~ 48)		
	γ=(
= 2	9 212-63			

[3]


$$=\frac{49}{6}n(2n^2+3n+1)+\frac{63}{2}n(n+1)+8n$$

$$\frac{49}{3}n^3 + \frac{49}{2}n^2 + \frac{49}{6}n + \frac{63}{2}n^2 + \frac{63}{2}n + \frac{8n}{2}$$

$= 49 n^3 + 9$	56 m²+ 143 n	
3	ઢ	

•••••	 •••••		 	 •••••	 	•••••	 	 •••••	••••••	 	••••
•••••	 	••••••	 	 	 	•••••	 	 		 	••••
••••	 		 	 	 		 	 		 	

$$\frac{1}{7} \stackrel{>}{\geq} \left(\frac{1}{(74+1)} - \frac{1}{(7+8)} \right) = \frac{1}{7} \left(\frac{1}{8} - \frac{1}{748} \right)$$

(c) Deduce the value of
$$\sum_{r=1}^{\infty} \frac{1}{(7r+1)(7r+8)}.$$
 [1]

$$\lim_{n\to\infty}\frac{1}{7}\left(\frac{1}{8}-\frac{1}{748}\right)$$

3 The cubic equation $x^3 + cx + 1 = 0$, where c is a constant, has roots α , β , γ .

(a)	Find a cubic equation whose roots are α^3 , β^3 , γ^3 .	[3]
	let y = n3	
	2 = y'13	
		•••••
	$(y^{1/3})^3 + c(y^3) + 1 = 0$	
	4+ cy ^{1/3} +1=0	
	$(4+1) = (-c4^{1/3})$	
	$(4+1)^3 = (-(4^{1/3})^{1/3})$	
	-c3y=(4+1)(y2+2y+1)	
	$-c^3q = y^3 + 2y^2 + y + y^2 + 2y + 1$	
	$-c^3y = y^3 + 3y^2 + 3y + 1$	
	43+342+C3x+34+1=0	
(b)	Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.	[3]
(-)	$y^3 + 3y^2 + (c^2 + 3)y + 1 = 0$	f- 1
	$d^{3}+\beta^{3}+\eta^{3}=-3$	
	$d^{3}\beta^{3} + d^{3}\eta^{3} + \beta^{3}\eta^{3} = c^{3} + 3$	
	$\chi^3 \beta^3 \chi^3 = -1$	
	$d^{6} + \beta^{6} + \delta^{6} = (d^{3} + \beta^{3} + \delta^{3})^{2} - 2(d^{3}\beta^{3} + d^{3}\delta^{3} + \beta^{3}\delta^{3}$	·)
	$(-3)^2 - 2(c^3 + 3)$	
	= 9-2c ³ -6	
	- 3- 2c ³	
	- 3- 20	

(c) Find the real value o	f c for which the matrix	$\begin{pmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{pmatrix} $ is singular	nr. [5]
	$-\eta_3 \left \beta_3 \right +$		
= 1-16-96	$+ \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \right)^{3} + \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right)^{3} + \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right)^{3} + \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right)^{3} + \frac{1}{3} \left(\frac{1}{3} + \frac{1}{$	3 ³ 8 ³ - B6	
•	$(2^3) + 2(-1)$		
$-4+2c^{3}$			
20 ³ = 4	- 0		
C= 3 1 2			

4 The points A, B, C have position vectors

$$-\mathbf{i}+\mathbf{j}+2\mathbf{k}$$
, $-2\mathbf{i}-\mathbf{j}$, $2\mathbf{i}+2\mathbf{k}$,

respectively, relative to the origin O.

(a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]

= -2 -2j-2k

AC = DC - OA

= (22+2K)-(-2+j+2K)

- 32-1

 $\vec{n} = \begin{bmatrix} i & i & k \\ -1 & -2 & -2 \\ 3 & -1 & D \end{bmatrix}$

= -2i-6j-7k

d-a·n

 $= \begin{pmatrix} -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -6 \\ 7 \end{pmatrix}$

2-6+14=0=10

1. (-2i-6j+7K)=10 -2n-by+7y=10

© UCLES 2020

(b)	Find the perpendicular distance from <i>O</i> to the plane <i>ABC</i> .	[2]
	<u>d = 10</u>	
	171 122+6472	
	= 10	
	189	
(c)	Find the acute angle between the planes <i>OAB</i> and <i>ABC</i> .	[4]
	$\vec{n}_1 \cdot \vec{n}_2 = \vec{n}_1 \vec{n}_2 \cos \theta$	
	4	
	$ \begin{array}{c cccc} $	
	-1 1 2	
	1-7-10	
	= 2j-4j+3k	
	$\begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ -6 \\ 7 \end{pmatrix} = \sqrt{2^{2}+4^{2}+3^{2}} \cdot \sqrt{2^{2}+6^{2}+1^{2}} \cos \theta$	
	\ 3/ \ 7)	
	······	
	-4+24+21 = 129.189 COSQ	
	asl = 41	
	V29 VEG	
	Q: cos'(\frac{21}{29 \frac{1}{129 \frac{1}{	
	129 087 1	
	Q = 26.2°	

5 Prove by mathematical induction that, for every positive integer n,

$$\frac{\mathrm{d}^{2n-1}}{\mathrm{d}x^{2n-1}}(x\sin x) = (-1)^{n-1} \left(x\cos x + (2n-1)\sin x\right).$$
 [7]

Prove for n=1=

da (asina) = simut acosa

PHS: (-1)0(20052+Sin2)

= 2 COSNSINX

1 Cosasina = 2 cosasina

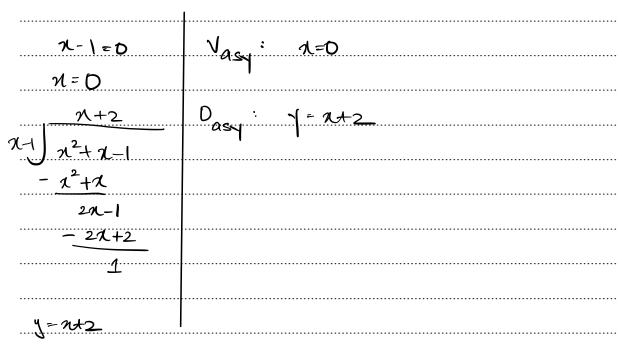
Suppose for n=t

 $\frac{d^{(2k-1)}}{da^{(2k-1)}} \left(a \sin \alpha \right) = (-1)^{k-1} \left(a \cos \alpha + (2k-1) \sin \alpha \right)$

Prove for n- +11

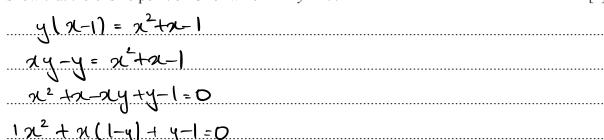
 $\frac{d^{2k+1}}{da^{2k+1}} \left(a \sin \alpha \right) = \frac{d}{da} \left(\frac{d^{2k}}{da^{2k}} a \sin \alpha \right)$

 $\frac{d^{2k} \left(nsinn\right) = d \left(\frac{d^{2k-1}}{dn^{2k-1}} \right) + dn \left(\frac{d^{2k-1}}{dn^{2k-1}} \right)$

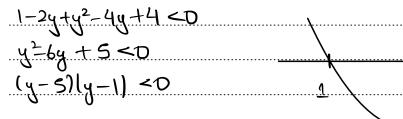

 $= \frac{d}{dx} \left(\frac{1-1}{1-1} \left[x \cos x + (2k-1) \sin x \right] \right)$ $= (-1)^{k-1} \left[\cos x - x \sin x + (2k-1) \cos x \right]$

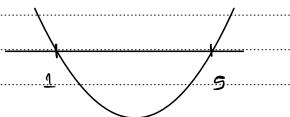
 $= (-1)^{k-1} (-215) + 216 \approx 21$

$\frac{d^{2k+1}}{dn^{2k+1}} = \frac{d}{dn} \left[(-1)^{k-1} \left(-a \sin n \right) + 2k(\cos n) \right]$ $= (-1)^{k-1} \left(-s \sin n - a \cos n - 2k \sin n \right)$
= (-1)k (ncosa+(2KH)sina)
: the for next hance it is three for all positive integers of n.


- The curve C has equation $y = \frac{x^2 + x 1}{x 1}$.
 - (a) Find the equations of the asymptotes of C.

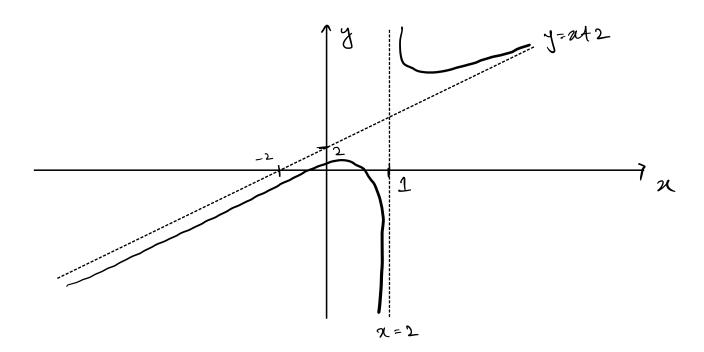
[3]


(b) Show that there is no point on C for which 1 < y < 5.

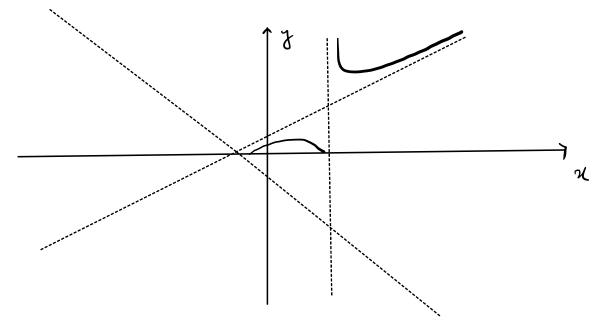

[4]

 $b^2-4ac < 0$

(1-y)2-4(1)(y-1)=0



-: 1 < y < 5		
\mathcal{I}		


© UCLES 2020

(c) Find the coordinates of the intersections of C with the axes, and sketch C.

Find the coordinates of the intersections of C with the axes, and sketch C . [3]		
y-intercept	21-intercept	
= (D ₁)	パ ² +ル-l= O	
•	x=-1±15	
	2_	
	(-1+5,0) & (-1-5	3 D)

(d) Sketch the curve with equation $y = \left| \frac{x^2 + x - 1}{x - 1} \right|$ [2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.