

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

520231154

FURTHER MATHEMATICS

9231/13

Paper 1 Further Pure Mathematics 1

May/June 2021

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

1 (a) Show that

Let

(b)

		$\tan(r+1) - \tan r = \frac{1}{c}$	$\frac{\sin 1}{\cos(r+1)\cos r}.$	[2]
gin (rzi)	- sinr	= SM(rH) con	- sintcay(r+1)	- 91 (r+1-r)
COS(171)	COST	Cay	((0)(1+1)	cos(rH)cos r
= 51	Λĺ	Hence	show.	
cos(r	+1) CONV			
$q_r = \frac{1}{\cos(r+1)\cos(r+1)}$	$\cos r$.			
Use the method	of differ	ences to find $\sum_{r=1}^{n} u_r$.		[3]
& ur	= &	tan(r+1) - tan(r)		
r=1: tam	12-tou	 ^/		
1=21 tou	3 to	r 2		
r=21 tam r=n: tam([n+1) -	omn		
2)	<u>ta</u>	<u>n(n+1) – tann</u> c;n 1		
		-	l	

Explain why the infinite series $u_1 + u_2 + u_3 + \dots$ does not converge. [1]
tan(n+1) oscillates as n ->
so $u_t + u_2 + u_s + \dots$ does not connerge.
V

(c)

2

	ic equation $2x^3 - 4x^2 + 3 = 0$ has roots α , β , γ . Let $S_n = \alpha^n + \beta^n - \beta^n = 0$	$+\gamma^n$.
(a) Sta	te the value of S_1 and find the value of S_2 .	[3]
	$\int_{2} = S_{1}^{2} - 2(0)$ $= 2^{2} - 0$	
	$S_z = y$	
(b) (i)	Express S_{n+3} in terms of S_{n+2} and S_n . $S_{n+3} = 2S_{n+2} - \frac{3}{2}S_{n+3}$	[1]
<i>(**</i>)		
(ii)	Hence, or otherwise, find the value of S_4 . $S_4 = 2S_3 - \frac{3}{2}S_1 = 2(2S_2 - \frac{3}{2}S_0) - \frac{3}{2}S_1$	[2]
	<u>S</u> ₄ = 4	

	uation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$.	[3]
y=	-	
ひっ	= 2-y	
2(2-y)	$= \lambda - y$ $y^{3} - 4(2 - y)^{2} + 3 = 0$	
	$2y^3 - 8y^2 + 8y - 3 = 0$	
Find the value	of $\frac{1}{\alpha + \beta} + \frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha}$.	[2]
	= 8	
	= 8	
8/2 -3/2	= 8 3	
	= 8 3	

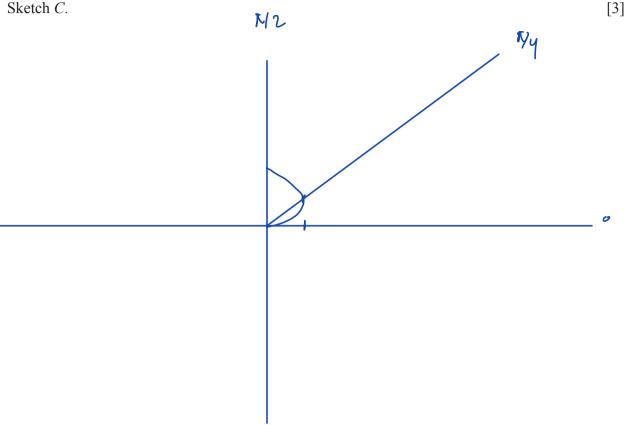
3 (a) Prove by mathematical induction that, for all positive integers n,

$\sum_{r=1}^{n} (5r^4 + r^2) = \frac{1}{2}n^2(n+1)^2(2n+1).$	[6]
for n=1	
$\frac{\xi}{\xi} 5r^{4} + r^{2} = 5(1)^{4} + 1^{2} = 5 + 1 = 6 \text{(1H5)}$	
$\frac{1}{2}(1)^{2}(1+1)^{2}(2+1) = \frac{1}{2}(2)^{2}(3) = 6 (RH3)$ $(H3 = RH3 So Mue$	
Assume true for $n=k$ $\frac{k}{2}(6r^4+r^2) = \frac{1}{2}k^2(k+1)^2(2k+1)$	•••••
frome for n=k+1	
From for $n=k+1$ $\xi (51^{9}+r^{2}) = \xi (51^{9}+r^{2}) + 5(k+)^{9}+(k+1)^{2}$ $r=1$	
$= \frac{1}{2} (k+1)^{2} (2k^{3}+k^{2}+10(k^{2}+2k+1)+2)$	
$= \int_{2}^{2} (k\tau_{1})^{2} (2k^{3} + 11k^{2} + 20k + 12)$	
$=\frac{1}{2}(k+1)^{2}(k+2)^{2}(2k+3)$	
Hence holychion is complete.	
	•••••

017	ر بر المالي	torising	g your a	nswer.	2n+1	1 -	Lui	(n +1)	(2n	+1)		
••••	ra		יייי ניי	!.:.J	, , , , , ,)	6	ر		·		
	.											
	<u> 9</u> 19 =	1	- n (n 1	r1)(2v	1+1) (an (n=	-1) -1)				
••••	r=1	3	5 <u>c</u>					<i>k</i>	••••••			,
[N							7				
	2r4=	<u>-</u> 1	n (n+1)	1(2n+	1)(3n	1+3n	-1)					
	(2)	30			· • • • • • • • • • • • • • • • • • • •					••••••		
اا								<u>.</u>				
••••		•••••		• • • • • • • • • • • • • • • • • • • •				••••••	••••••	••••••	•••••	
••••					· • • • • • • • • • • • • • • • • • • •					••••••		
					• • • • • • • • • • • • • • • • • • • •							
••••		•••••		•••••				•••••	•••••	••••••	•••••	
••••	•••••	•••••	•••••	•••••						•••••		,
••••	•••••	•••••	•••••	•••••						••••••	•••••	,
					• • • • • • • • • • • • • • • • • • • •							
••••	•••••	•••••	•••••	•••••						••••••	•••••	,
•••••												
••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •								
••••										•••••		

4 The matrices A, B and C are given by

$$\mathbf{A} = \begin{pmatrix} 2 & k & k \\ 5 & -1 & 3 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \quad \mathbf{C} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 0 \end{pmatrix},$$


where k is a real constant.

(a)	Find CAB. $ \begin{pmatrix} 0 & 1 & & \\ -1 & 20 & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	
	$= (19-k)^{-1}$	
(b)	Given that \mathbf{A} is singular, find the value of k .	[3]
	$\frac{2 -13 }{-1} - k \frac{53 }{11 } + k \frac{5-1}{10 } = 0$ $-2 - 2k + k = 0$	
	-£=2	

Using the value of <i>k</i> from part the transformation in the <i>x</i> - <i>y</i> pl	(b), find the equations of the invariant lines, the lane represented by CAB.	rough the origin, of [5]
/ 10 -1) / 2 \ =	/ 16x -y \	
$\binom{10}{16} \binom{-1}{9} \binom{2}{9} =$	167	
10x-mx = 16m2		
16m = 10m-n	Λ ²	
m2-10m+16-0)	
$m^2 - 8m - 2m + 2$	+ 16=0	
m(m-b)-2(1	m-8)=0	
(m-2)(m	-8) -0	
M-2=D	m-8=8	
W=5	m=3	
<u></u>		
y=2x,	y=84	

The curve C has polar equation $r = \frac{1}{\pi - \theta} - \frac{1}{\pi}$, where $0 \le \theta \le \frac{1}{2}\pi$. 5

(b) Show that the area of the region bounded by the half-line $\theta = \frac{1}{2}\pi$ and C is $\frac{3-4\ln 2}{4\pi}$. [6]

 $\frac{1}{2} \int_{0}^{\sqrt{2}} \frac{1}{(\pi - 0)^{2}} \frac{1}{\pi(\pi - 0)} \frac{1}{\pi^{2}} d\theta$

 $\frac{1}{2} \left[\frac{L}{\kappa^{-0}} + \frac{2}{\kappa} \ln \kappa^{-0} + 0 \right]^{\frac{N}{2}}$

 $\frac{1}{2} \left(\frac{2}{x} + \frac{2}{4} \ln \frac{x}{x} + \frac{1}{4} - \left(\frac{1}{x} + \frac{2}{4} \ln x \right) \right) = \frac{1}{2} \left(\frac{3}{2x} + \frac{2}{4} \ln x \right)$

9231/13/M/J/21 © UCLES 2021

••••••
•••••
•••••
•••••

The lines l_1 and l_2 have equations $\mathbf{r} = -\mathbf{i} - 2\mathbf{j} + \mathbf{k} + s(2\mathbf{i} - 3\mathbf{j})$ and $\mathbf{r} = 3\mathbf{i} - 2\mathbf{k}$ respectively.	$+\iota(3\mathbf{I}-\mathbf{j}+3$
The plane Π_1 contains l_1 and the point P with position vector $-2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.	
(a) Find an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. -(-2) + (-2) - (-2) + (-2) + (-2) - (-3) = (
-i-2j+k-(-2i-2j+4k)=i-31C $r=-2i-2j+4k+x(2i-3j)+u(i-31c)$	
The plane Π_2 contains l_2 and is parallel to l_3 .	
The plane Π_2 contains l_2 and is parallel to l_1 . (b) Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$.	
(b) Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$.	

-9n - 6y + 7z =) - 9(3) - 6(0) + 7(-2) = -4)
J
-9x-6y+7z=-4)
J
92+64-72=41

Find the acute angle between Π_1 and Π_2 .	[5]
$\frac{1}{2}$	
$\begin{bmatrix} \frac{3}{2} \\ \frac{1}{7} \end{bmatrix} = \begin{bmatrix} \frac{9}{6} \\ \frac{1}{7} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\ \frac{1}{4} \end{bmatrix}$	
CO19 = 32	
JI4 J 166	
0=48.40	

								\longrightarrow	\longrightarrow
(d)	The p	oint	O	is	such	that	OO =	=-5OP

Find the position vector of the foot of the perpendicular from the point Q to Π_2 . [4]
$\overline{OF} = \overline{OQ} + \overline{QF} = -5 \left(-\frac{1}{2} \right) + t \left(\frac{6}{6} \right) = \begin{pmatrix} 10 + 9t \\ 10 + 6t \\ -20 - 7t \end{pmatrix}$
$9(10+9t) + 6(10+6t) - 7(-20-7t) = 4/$ $290 + 166t = 4/$ $t = -\frac{3}{2}$
$OF = \begin{bmatrix} -\frac{7}{2} \\ 1 \\ -\frac{9}{2} \end{bmatrix}$

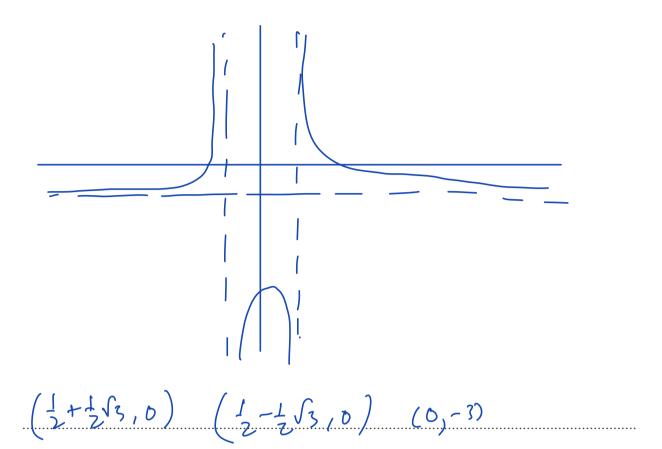
The curve C has equation	$y = \frac{x^2 - x - 3}{1 + x - x^2}$
	The curve C has equation

(a)	Find the equations of the asymptotes of <i>C</i> .	[2]
	ス?ール-1=0	
	ス= <u> t </u>	
		••••••

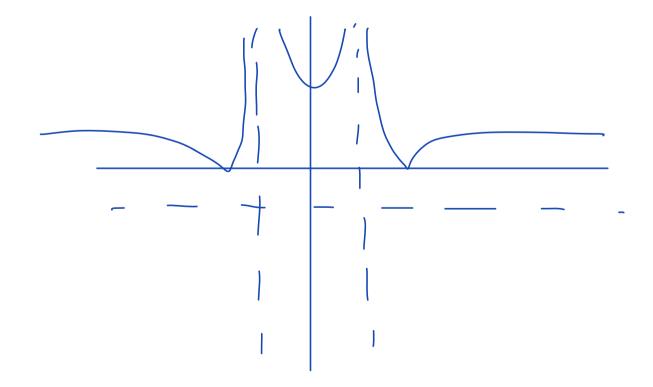
	λ= 1+ Ss	λ= 1-√s,	y=-1
	2	2	
•••••			

•••••	 	

(b)	Find the coordinates of any stationary points on <i>C</i> .	[3]
	$\frac{dy}{dx} = \frac{(1+x-x^2)(2x-1) - (x^2-x-3)(1-2x)}{(2x-1)^2} = 0$	


(271-1)(-2)=0	
$\alpha = k_0$	

	_	1	
	(=, -12)		
•••••	••••••	•••••	 •••••


•••••	• • • • • • • • • • • • • • • • • • • •	 •

[3]

(c) Sketch C, stating the coordinates of the intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{x^2 - x - 3}{1 + x - x^2} \right|$ and find in exact form the set of values of x for which $\left| \frac{x^2 - x - 3}{1 + x - x^2} \right| < 3$.

$\chi^2 - \chi - 3 = 3$	$\chi^2 - \chi - \chi$	33
1+x-x2	1+21-2	(²
22 ² -2x -3=0	-2	n ² +2x=0
n= 2 ± 2/7		
2-2	7.F	0, 1
7< 1-157	0 <x<1, x=""> 2.</x<1,>	r-1-(7

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.