

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

6 1 4 6 6 6 2 3 8 2

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

October/November 2022

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the linear page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

1 (a) Use the list of formulae (MF19) to find $\sum_{r=1}^{n} r(r+2)$ in terms of n, simplifying your answer. [2]

$$= \frac{Ln(n+1)(2n+1) + n(n+1)}{6}$$

$$\frac{N}{2}r(r+2) = \frac{L}{6}n(n+1)(2n+7)$$

(b) Express $\frac{1}{r(r+2)}$ in partial fractions and hence find $\sum_{r=1}^{n} \frac{1}{r(r+2)}$ in terms of n. [4]

$$L = A + B \qquad A(r+2) + B(r) = 1$$
 $r(r+2) \qquad for \quad r=-2 \qquad for \quad r=0$

$$B = -\frac{1}{2} \qquad A = \frac{1}{2}$$

L = L - L r(r+2) = 2r = 2(r+2)

 $\frac{\mathcal{E}}{\mathcal{E}} \frac{1}{\mathcal{E}} = \frac{1}{2} \frac{\mathcal{E}}{\mathcal{E}} \frac{1}{7} - \frac{1}{172}$

$$r=1: \begin{pmatrix} 1-4 \\ 1-4 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{3}{2} - \frac{1}{2} - \frac{1}{n+1} \\ \frac{1}{n+2} \end{pmatrix}$$

r=7: (3/4)

r=4: (4/5)

 $r=n-1: (\cancel{x}-1 + \cancel{x}+1)$ $r=n: (\cancel{x}-1 + \cancel{x}+1)$

	•••
	• • •
	• • •
	• • •
	• • •
	-
	• • •
	• • •
	• • •
	• • •
	•••
	•••
Deduce the value of $\sum_{i=1}^{\infty} \frac{1}{i}$	
Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r(r+2)}$.	[1]
Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r(r+2)}$.	1]
Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r(r+2)}$.	1]
<i>7</i> −1 ⊗	 1]
<i>7</i> −1 ⊗	1]
<i>7</i> −1 ⊗	
<i>7</i> −1 ⊗	
Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r(r+2)}$. $\sum_{r=1}^{\infty} \frac{1}{r(r+2)} = \lim_{r \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
<i>7</i> −1 ⊗	
$\frac{2}{r} \frac{1}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
$\frac{2}{r} \frac{1}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
$\frac{2}{r} \frac{1}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
$\frac{2}{r} \frac{1}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
$\frac{2}{r} \int_{r=1}^{r} \frac{1}{r(r+r)} \int_{r=1}^{r} \frac{1}{r(r+r)} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{L}{n+1} - \frac{1}{n+r} \right) \right)$	
$\frac{2}{r} \frac{1}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{2}{r} \frac{1}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \right)$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	
$\frac{S}{r} = \lim_{n \to \infty} \left(\frac{1}{2} \left(\frac{3}{2} - L - \frac{1}{n+1} \right) \right)$ $\frac{1}{n+1} \to 0 , 1 \to 0 As n \to \infty$	

(c)

- The equation $x^4 + 3x^2 + 2x + 6 = 0$ has roots $\alpha, \beta, \gamma, \delta$. 2
 - (a) Find a quartic equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$, $\frac{1}{\delta^2}$ and state the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$.

 $y = \frac{1}{x^2} =$ $x^2 = \frac{1}{y} =$ $x = y^{-1/2}$

 $(y^{-1/2})^4 + 3(y^{-1/2})^4 + 2y^{-1/2} + 6 = 8$ $y^{-2} + 3y^{-1} + 2y^{-1/2} + 6 = 0$

 $\frac{1}{y^2} + \frac{3}{y} + \frac{2}{y^2} + 6 = 0$

 $\int 6y^2 + (3y+1) \int_{-2}^{2} \left[-2y^{\frac{3}{2}} - 2y^{\frac{3}{2}} \right]^2$ $\frac{(6y^2)^{\frac{1}{7}} + 2(6y^2)(3y+1) + (3y+1)^2 = 4y^3}{(6y^2)^{\frac{1}{7}} + 2(6y^2)(3y+1) + (3y+1)^2 = 4y^3}$

 $36y^{4} + 12y^{2}(3y+1) + 9y^{2} + 6y+1 = 4y^{3}$

 $\frac{1}{4^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} = \frac{59^{2} - 6}{9} = \frac{-32}{36} = -\frac{8}{9}$

(b)	Find the value of $\beta^2 \gamma^2 \delta^2 + \alpha^2 \gamma^2 \delta^2 + \alpha^2 \beta^2 \delta^2 + \alpha^2 \beta^2 \gamma^2$.	[3]
	9732725 1+ 1+ 1+ 17	

$$\frac{q}{3} \frac{3}{5} \frac{7}{5} \left\{ \begin{array}{c} -+ \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} \end{array} \right\}$$

$$q^{2}\beta^{2}\gamma^{2} = (\xi \tau \beta \gamma \xi)^{2} = 6^{2} = 36$$

$$\frac{1}{9^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{5^2} = -\frac{8}{9}$$

$$\beta^{2}\gamma^{2}\int_{-1}^{2} + \gamma^{2}\gamma^{2}\int_{-1}^{2} + \gamma^{2}\beta^{2}\int_{-1}^{2} + \gamma^{2}\beta^{2}\gamma^{2} = -\frac{8}{9}(36) = -32$$

(c)	Find the value of $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$.	[2]

$$\xi q^2 = \left(\xi q\right)^2 - 2\xi q^3$$

$$= \left(-\frac{\xi}{q}\right)^2 - 2\left(\frac{21}{36}\right)$$

$$\frac{\zeta_{q^2} = -61}{162}$$

3	The matrix \mathbf{M} is given by $\mathbf{M} =$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\binom{0}{k}\binom{1}{k}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	where k is a constant and $k \neq 0$ or
3	The matrix \mathbf{M} is given by $\mathbf{M} =$	0/	$k \mid \mid k$	1/,	where k is a constant and $k \neq 0$ or

				_		
- (• /	The metrix M	ranraganta	sequence of two	gaamatriaal	transformations
- 12	a)	THE HIALIX IVI	represents a	seduence of two	geometricar	transformations.
١.	-,				0	

State the type of each transformation, and make clear the order in which they are applied. [2]

Sheat in y-direction followed by a stretch
parallel to y-anis scale factor k.

(b) Write \mathbf{M}^{-1} as the product of two matrices, neither of which is \mathbf{I} . [2]

 $M^{-1} = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix} \cdot \stackrel{!}{k} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$

 $M^{-1} = \begin{pmatrix} \begin{pmatrix} 0 \\ -K \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1/K \end{pmatrix}$

(c) Show that the invariant points of the transformation represented by **M** lie on the line $y = \frac{k^2}{1-k}x$.

 $M = \frac{\kappa^2}{1-\kappa}$ [4]

 $M = \begin{pmatrix} 1 & 0 \\ K^2 & F \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ K^2 & K \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

π = X

 $k^2 \pi + Km \pi = m \pi$

 $m-km=k^2$

 $m(1-k)=k^2$ $m=-k^2$

 $M = K^2$ |-|

.....

The triangle ABC in the x - y plane is transformed by \mathbf{M} onto triangle DEF .
Find the value of k for which the area of triangle DEF is equal to the area of triangle ABC . [2]
1= K
K = -1

(d)

4	The function	fice	such t	hat f"	$(\mathbf{r}) = \mathbf{f}$	(r)
4	THE TUILCUOI	. 1 15 3	sucii i	mai i ($x_1 - 1$	(<i>A)</i> .

Prove by mathematical induction that, for every positive integer n,

$$\frac{d^{2n-1}}{dx^{2n-1}}(xf(x)) = xf'(x) + (2n-1)f(x).$$
 [7]

$$\frac{d(xf(x)) = f(x) + xf'(x) \quad (1HS)}{dx}$$

$$xf'(x)+(2(1)^{-1})f(x) = f(x)+xf'(x)$$
 (RH1)

$$\frac{d^{2k-1}}{d^{2k-1}} (nf(n)) = nf'(n) + (2k-1) f(n)$$

true for
$$n=k+1$$

$$\frac{d^{2k+1}}{dx^{2k+1}} \left(xf(x) \right) = \frac{d^{2}}{dx^{2}} \left(\frac{d^{2k+1}}{dx^{2k+1}} \left(xf(x) \right) \right)$$

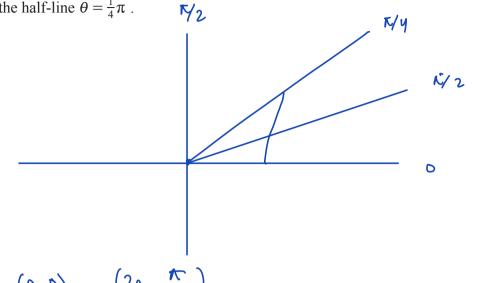
$$\frac{d}{dx}\left(xf'(x) + (2k-1)f(x)\right)$$

$$= f'(n) + \lambda f''(n) + (2k-1)f'(n)$$

$$= f'(n) + \lambda f(n) + 2kf'(n) - f'(n)$$

$$= \lambda f(n) + 2kf'(n)$$

$$\frac{d(xf(n) + 2icf'(n))}{dn} = f(n) + xf'(n) + 2kf''(n)$$


$$= f(n) + xf'(n) + 2kf(n)$$

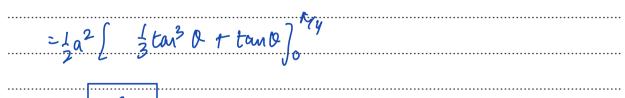
$$= xf'(n) + (2k+1)f(n)$$

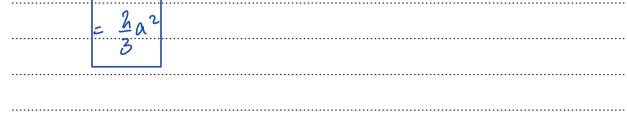
$$= xf'(n) + (2(k+1)-1)f(n)$$

9231/12/O/N/22

- 5 The curve C has polar equation $r = a \sec^2 \theta$, where a is a positive constant and $0 \le \theta \le \frac{1}{4}\pi$.
 - (a) Sketch C, stating the polar coordinates of the point of intersection of C with the initial line and also with the half-line $\theta = \frac{1}{4}\pi$.

 $(a_10) \qquad (2a_1, \frac{4}{4})$


(b) Find the maximum distance of a point of C from the initial line. [2]



(c) Find the area of the region enclosed by C, the initial line and the half-line $\theta = \frac{1}{4}\pi$. [4]

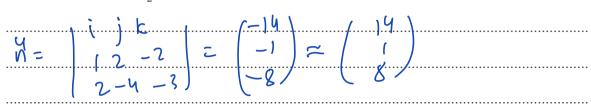
$$=\frac{1}{2}a^{2}\int_{0}^{\sqrt{4}} Sec^{2}O(1+tan^{2}O)dO$$

(I)	
(a)	Find, in the form, $y = f(x)$, the Cartesian equation of C. [3] $ \sqrt{1 + y^2} = r $ $ 2 $
	$\int X \cdot y = 1$
	$(^{2}C_{0})^{2}O = MY$
	$\gamma^{2}\cos^{2}\theta = \alpha\gamma$ $\chi^{2} = \alpha \sqrt{\lambda^{2}+y^{2}}$ $\chi^{4} = \alpha^{2}(\lambda^{2}+y^{2})$
	$\frac{2}{3} = \frac{2}{3} \left(\frac{1}{3} + \frac{2}{3} \right)$
	$\lambda^{7} = \lambda^{2} (\lambda + 9)$
	u -2 2
	$y = \sqrt{\lambda' \alpha' - \lambda''}$

6	The	lines	l_1	and	l_2	have	equations	r =	$= 2\mathbf{i} + \mathbf{k} + \lambda$	$\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	and	$\mathbf{r} = 2\mathbf{j} + 6\mathbf{k} +$	$-\mu(\mathbf{i}+2\mathbf{j}-$	-2 k)
	respe	ctively	y.		_									

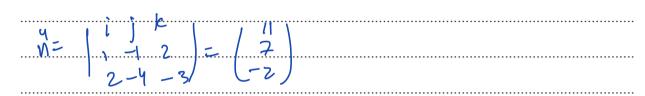
The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 .

(a)	Find the length PQ . [5]
	$N = \begin{bmatrix} 1 & 5 & k \\ 1 & 2 & -2 \end{bmatrix} = \begin{pmatrix} 2 \\ -4 \\ -3 \end{pmatrix}$
	$\frac{1}{2^{2}+4^{2}+3^{2}}\begin{pmatrix} -2\\2\\5\end{pmatrix} \cdot \begin{pmatrix} 2\\-4\\-3\end{pmatrix} = \frac{27}{\sqrt{29}} = 5.01$


The plane Π_1 contains PQ and l_1 .

The plane Π_2 contains PQ and l_2 .

(b) (i) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$. [1]


r= 2i+k +s(i-j+2k)++(2i-4j-3k)

(ii) Find an equation of Π_2 , giving your answer in the form ax + by + cz = d. [4]

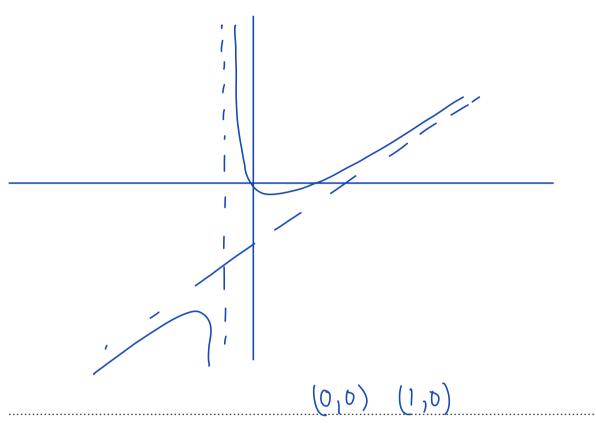
-14x - y - 8z = 0 14x + y + 8z = 50 14(0) + 2 - 8(6) = 50

(c) Find the acute angle between Π_1 and Π_2 . [5]

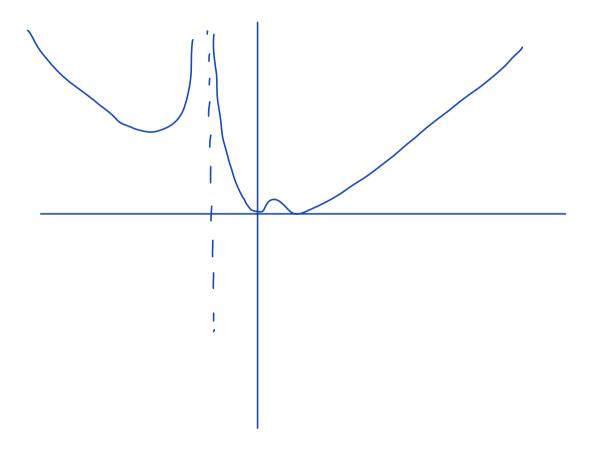
 $\left(\frac{7}{7}\right)$, $\left(\frac{19}{8}\right) = \sqrt{179}\sqrt{261}\cos\theta$

COO = 149 V1745261

Q = 47·1


© UCLES 2022 9231/12/O/N/22 **Turn over**

7	The curve C has equation	$y = \frac{x^2 - x}{x + 1}.$


(a)	Find the equations of the asymptotes of C .	[3]
	$y = (2x+1)(2x-2) + \lambda$	
	7+1	
	y = N-2	
	U	
(b)	Find the exact coordinates of the stationary points on <i>C</i> .	[4]
	dy = 1 - 2 = 0	
	$\frac{dy}{dx} = 1 - \frac{2}{(x+1)^2} = 0$	
	$(n+1)^2 = \lambda$	
	$1 + = \sqrt{2}$ $1 + = -\sqrt{2}$ $1 + = -\sqrt{2}$ $1 + = -\sqrt{2}$ $1 + = -\sqrt{2}$	
	$\chi = \sqrt{2-1} \qquad \chi = -1-\sqrt{2}$	
	$(-1+\sqrt{2}, -3+2\sqrt{2})$ $(-1-\sqrt{2}, -3-2\sqrt{2})$	

[3]

(c) Sketch C, stating the coordinates of any intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{x^2 - x}{x+1} \right|$ and find in exact form the set of values of x for which $\left| \frac{x^2 - x}{x+1} \right| < 6$. [5]

λ'-	-n = 6		12-7 =	-6	
24	· ì		N+1		
λ -	7n-6=0	2 ²	+52+6	=0	
NZ	7-153, 7+153		Λ=-3,	-2	
	-3 CN C-2	7-15	3 < n < 3	2+1/3	

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.						

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.