
1	(a)	Use standard results from the list of formulae (MF19) to find $\sum_{r=1}^{n} (3r^2 + 3r + 1)$ in terms of simplifying your answer. 3 $\sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r + \sum_{r=1}^{n} r^2$	of <i>n</i> , [3]
		$= \frac{3}{6}n(n+1)(2n+1) + \frac{3}{2}n(n+1) + N$ $= \frac{1}{2}n(n+1)(2n+1) + \frac{3}{2}n(n+1) + N$	
		$= \frac{1}{2} n(n+1)(2n+1) + \frac{2}{2} n(n+1) + M$	
		$=\frac{1}{2}n\left[(n+1)(2n+1)+3(n+1)+2\right]$	
		$= \frac{1}{2} n \left[2n^2 + 3n + 1 + 3n + 3 + 2 \right]$	
		$=\frac{1}{2}n\left[2n^{2}+6n+6\right]$	
		$= n(n^2 + 3n + 3)$	
		$= n^3 + 3n^2 + 3n$	•••••
		$\frac{9}{5}(3r^{2}+3r+1) = n^{3}+3n^{2}+3n$	
		(5) + (3) + (1) - (1) + (3) + (3) (1)	
			•••••
			•••••

(b) Show that

$$\frac{1}{r^3} - \frac{1}{(r+1)^3} = \frac{3r^2 + 3r + 1}{r^3(r+1)^3}$$

and hence use the method of differences to find $\sum_{r=1}^{n} \frac{3r^2 + 3r + 1}{r^3(r+1)^3}.$ $\frac{(\gamma+1)^3}{(\gamma+1)^3} \implies \frac{3}{r^3(\gamma+1)^3} + \frac{3}{r^3(\gamma+1)^3} + \frac{3}{r^3(\gamma+1)^3}$

N		
$\mathcal{L} = \frac{1}{3} - \frac{1}{3}$	=>	
(r+1)?	(n+1) ³	

(c) Deduce the value of $\sum_{r=1}^{\infty} \frac{3r^2 + 3r + 1}{r^3(r+1)^3}$. [1]

2	Prove	by mathemat	ical induct	tion that,	for all	positive	integers n.

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(x^2 \mathrm{e}^x \right) = \left(x^2 + 2nx + n(n-1) \right) \mathrm{e}^x.$$
 [6]

for	n=	1					
)	d	$(\chi^2 e^{\chi})$	Ξ	22e2 +	ned	(LHS)	
	dx						

$$(x^{2}+2x+1(x-1))e^{x}=(x^{2}+2x)e^{x}=2xe^{x}+x^{2}e^{x}$$
 (RHS)

Suppose true for
$$n=k$$

$$\frac{d^{k}(n^{2}e^{n})}{dn^{k}} = (n^{2}+2kn+k(k-1))e^{n}$$

from the for next!

$$\frac{d^{KH}}{dn^{KH}} = \frac{d}{dn} \left(\frac{d^{K}}{dn^{2}} \left(\frac{n^{2}e^{N}}{n^{2}} \right) \right)$$

$$=\frac{d}{dn}\left[\left(\chi^{2}+2k\chi+k^{2}-K\right)e^{\chi}\right]$$

$$= (2\pi + 2k)e^{2} + e^{2}(x^{2} + 2kx + k^{2} - k)$$

$$= e^{2}(2x + 2k + x^{2} + 2kx + k^{2} - k)$$

$$= (x^{2} + (2k + 2)x + k^{2} + k)e^{2}$$

)e ⁿ

Hence induction is complete

3	The matrix M is given by $\mathbf{M} = \begin{pmatrix} k \\ 0 \end{pmatrix}$	$\binom{0}{1}\binom{1}{1}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, where k is a constant and $k \neq 0$ and $k \neq 1$.
---	---	----------------------------	--

(a)	The matrix M represents a sequence of two geometrical transformations. State the type of	f each
	transformation, and make clear the order in which they are applied.	[2]

Sheal	followed	by	ON	spetch
	V			
	•••••	•••••	•••••	

The unit square in the x-y plane is transformed by **M** onto parallelogram OPQR.

(b) Find, in terms of
$$k$$
, the area of parallelogram $OPQR$ and the matrix which transforms $OPQR$ onto the unit square. [3]

$$M = \begin{pmatrix} K & 0 \\ 1 & 1 \end{pmatrix}$$
 $\det(M) = K$ $|K| = |OPOR|$

$$M_{-1} = \frac{K}{T} \begin{pmatrix} -1 & K \end{pmatrix}$$

(c) Show that the line through the origin with gradient
$$\frac{1}{k-1}$$
 is invariant under the transformation in the $x-y$ plane represented by **M**. [3]

$$\begin{pmatrix} k & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} k & \lambda \\ \lambda + 1 & \lambda \end{pmatrix} = \begin{pmatrix} k & \lambda \\ k & \lambda \end{pmatrix}$$

$$\begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} \chi \\ \frac{1}{k-1} \chi \end{pmatrix}$$

$$\begin{pmatrix} k \\ k \\ \end{pmatrix} = k \begin{pmatrix} \lambda \\ L \\ \end{pmatrix}$$

- 4 The cubic equation $27x^3 + 18x^2 + 6x 1 = 0$ has roots α , β , γ .
 - (a) Show that a cubic equation with roots $3\alpha + 1$, $3\beta + 1$, $3\gamma + 1$ is

$y^3 - y^2 + y - 2 = 0.$	[3]
y= 3x+1	
$\frac{y-1}{3}=x$	
$27\left(\frac{9^{-1}}{3}\right) + 18\left(\frac{9^{-1}}{3}\right) + 6\left(\frac{9^{-1}}{3}\right) - 1 = 0$	
1	•••••
$\frac{27}{27} (y-1)^{5} + \frac{18}{9} (y-1)^{2} + 2(y-1)^{2} - 1 = 0$	••••••
$(y-1)^{3}+2(y-1)^{2}+2(y-1)-1=0$ $y^{3}-3y^{2}+3y-1+2y^{2}-4y+2+2y-3=0$	
$y^3 - 3y^2 + 3y - 1 + 2y^2 - 4y + 2 + 2y - 3 = 0$	
$y^3 - y^2 + y - 2 = 0$	
	•••••
	•••••
	•••••

The sum $(3\alpha+1)^n + (3\beta+1)^n + (3\gamma+1)^n$ is denoted by S_n .

(b) Find the values of S_2 and S_3 . [4]

 $\frac{C_2}{C_2} = \frac{29}{2}$ $\frac{C_3}{C_4} = \frac{29}{2}$

 $\frac{z-1}{S_2 = -1}$

 $S_3 - S_2 + S_1 - 6 = 0$ $S_3 = S_2 + 6 - S_1$

= -1 + 6 - 1 - 4

 $\int_{3}^{2} -4$ $y^{3}-y^{2}+y-2=0$

(c) Find the values of S_{-1} and S_{-2} . [3] $S_{-1} = \frac{2 + 1^3}{4 - 8 \sqrt{2}} = \frac{1}{2 - 2}$

 $\int_{-1}^{1} = \frac{(3941)(3841) + (3841)(37+1) + (3941)(3741) = -1}{(3941)(37+1)}$

divide by y²

 $y^{-1} + y^{-1} - 2y^{-2} = 0$ $s_1 - 3 + s_1 - 2s_{-2} = 0$

 $S_{-2} = \frac{S_1 + S_{-1} - 3}{2}$

 $\frac{2}{S-2}=-\frac{3}{4}$

5	The plane Π .	has equation	$\mathbf{r} = \mathbf{i} - \mathbf{j} - 2\mathbf{k} + \lambda$	(i-2i)	$-3k) + \mu 0$	$(3\mathbf{i} - \mathbf{k})$
0	The plane II	mas equation	1 1 21 1	(,	311) pt	(31 11).

(a) Find an equation for Π_1 in the form ax + by + cz = d.

[4]

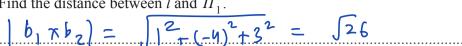
= (-4j + 3k) = (-4)

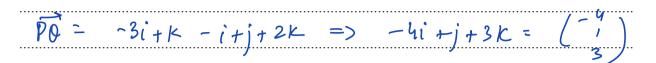
 $x - 4y + 3z = d \qquad (1, -1, -2)$

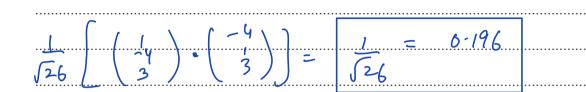
d= -1

x -4y +32=-1

The line l, which does not lie in Π_1 , has equation $\mathbf{r} = -3\mathbf{i} + \mathbf{k} + t(\mathbf{i} + \mathbf{j} + \mathbf{k})$.


(b) Show that l is parallel to Π_1 .


[2]


 $\begin{pmatrix} -4\\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 1 \end{pmatrix} = 1 - 4 + 3 = 0$

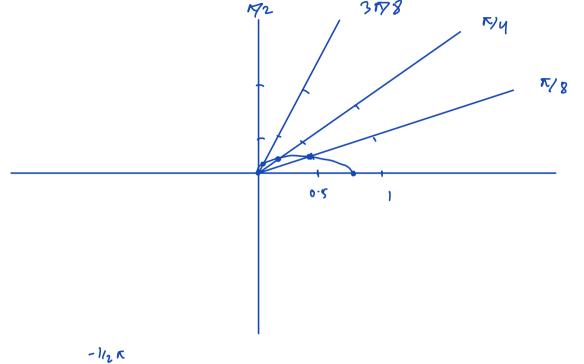
So parallel.

(c) Find the distance between l and Π_1 .

(d) The plane Π_2 has equation 3x + 3y + 2z = 1.

Find a vector equation of the line of intersection of Π_1 and Π_2 .

[4]


[3]

$$= \begin{pmatrix} -\Pi \\ 2 \\ 15 \end{pmatrix}$$

Let
$$n=0$$
 $3y+2z=1$ $y=\frac{5}{17}$ =) $\begin{pmatrix} 0\\ 5/17\\ 17 \end{pmatrix}$

$$r = \begin{pmatrix} 0 \\ 5/17 \\ 1/17 \end{pmatrix} + \lambda \begin{pmatrix} -17 \\ 7 \\ 15 \end{pmatrix}$$

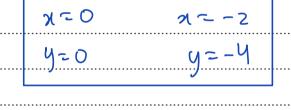
- 6 The curve C has polar equation $r = e^{-\theta} e^{-\frac{1}{2}\pi}$, where $0 \le \theta \le \frac{1}{2}\pi$.
 - (a) Sketch C and state, in exact form, the greatest distance of a point on C from the pole. [3]

- 1-e
- (b) Find the exact value of the area of the region bounded by C and the initial line. [5] $\frac{1}{2} \int_{0}^{92} (e^{-\theta} e^{-\frac{1}{2}C})^{2} dQ$
 - $\frac{1}{2} \int_{0}^{\sqrt{2}} e^{-20} 2e^{-0-1/2k} + e^{-k} d0$
 - $\frac{1}{2} \left[-\frac{1}{2} e^{-20} + 2e^{-0 \frac{1}{2} \sqrt{L}} + e^{-\sqrt{L}} 0 \right]_{0}$
 - $=\frac{1}{2}\left(-\frac{1}{2}e^{-\frac{1}{4}}+2e^{-\frac{1}{4}}+\frac{1}{2}\pi e^{-\frac{1}{4}}+\frac{1}{2}-2e^{-\frac{1}{2}}\right)=$
 - $=) \frac{3e^{-\kappa} + 1\pi e^{-\kappa} e^{-\frac{\pi}{2}} + 1}{4\pi e^{-\kappa} e^{-\frac{\pi}{2}} + 1}$

(c)	Show that, at the point on <i>C</i> furthest from the initial line,	r=e-0-e-1/2
	$1 - \mathrm{e}^{\theta - \frac{1}{2}\pi} - \tan \theta = 0$	
	and verify that this equation has a root between 0.56 and 0.57.	[5]
	$y = \left(e^{-\alpha} - e^{-\gamma_2}\right) \sin \theta$	y=rsin Q
		<u> </u>
	-5/p	y = <u>2</u> Sin €
	$\frac{dy = \cos\theta(e^{-\theta} - e^{-\frac{\pi}{2}}) + \sin\theta(-e^{-\theta})}{d\theta = \cos\theta e^{-\theta} - \cos\theta e^{-\frac{\pi}{2}} - \sin\theta e^{-\theta}}$ $\frac{\cos\theta e^{-\theta} - \cos\theta e^{-\theta}}{\cos\theta e^{-\theta}} \cos\theta e^{-\theta}$	
	do = contro - contro - 5/2 - civil o - 0	
	$\frac{1}{\sqrt{5}}$	
	caste caste coste	
	± 0	
	$= 1 - e^{-\frac{1}{2} + 0} - \tan 0 = 0$	
	$1-e^{-\sqrt{2}}$ ton $0=0$	
	1-e - tom 0 =0	
	$[-e^{0.50-\sqrt{2}}]$ $[-e^{0.59-\sqrt{2}}]$ $[-e^{0.59-\sqrt{2}}]$ $1-e^{0.59-\sqrt{2}}$ $1-e^{0.59-\sqrt{2}}$	
	$\frac{1}{2} \frac{1}{2} \frac{1}$	
	$1-e^{-t}$ - tan 0.57 = -0.00856	
	≯	
	sign change	
	sign chinge	

- 7 The curve C has equation y = f(x), where $f(x) = \frac{x^2}{x+1}$.
 - (a) Find the equations of the asymptotes of C. $\mathcal{X} + 1 = 0$

η=-| ← VA

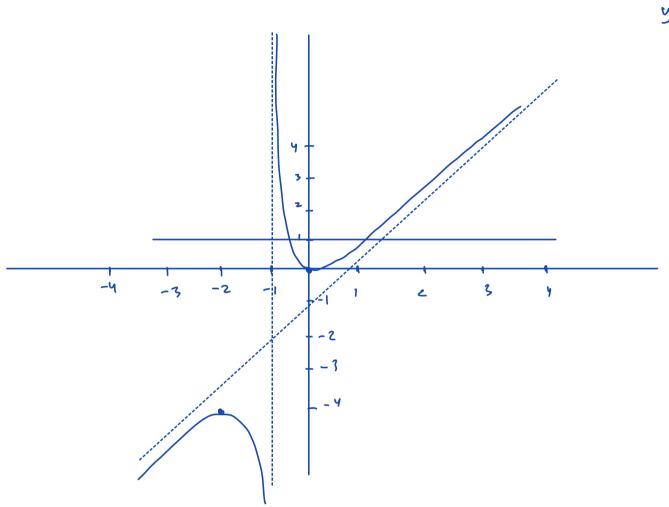


y= 2-1	← 6A	
 U		

(b) Find the coordinates of any stationary points on *C*.

 $u=x^{2}$ v=x+1 $v^{2}=1$

dy =	$2n(n+1)-n^2$
92	(x+1) ²


 $2x^{2}+2x-x^{2}=0$ $x^{2}+2x=0$

[3]

[2]

(c) Sketch *C*.

u -2

(d) Find the coordinates of any stationary points on the curve with equation $y = \frac{1}{f(x)}$. [2]

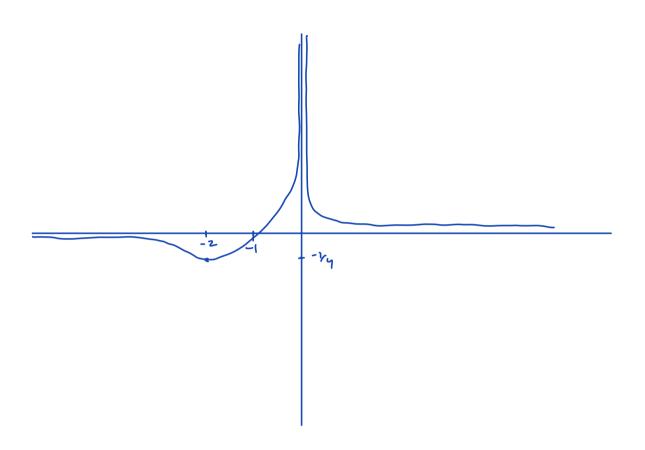
 $\frac{y=x+1}{x^2}$

 $yx^{2} = x+1$ $(-2, -\frac{1}{4})$ $yx^{2} = x-1=0$

 $6^{2}-4ac$ $(-1)^{2}-4(y)(-1)=0$

1+hy = 0 y=-L

y = 0


(e) Sketch the curve with equation $y = \frac{1}{f(x)}$ and find, in exact form, the set of values for which

[6]

(-1,0

(-2, -1)

 $\int_{1}^{2} (n) \langle 1 \rangle = \frac{n^{2}}{n+1}$ $\frac{n^{2}}{n+1} = I$ $\frac{n^{2}}{n+1} = I$ $\frac{n+1}{n+1}$ ADDITIONAL SHEET

Additional page

	age to complete the answer to a	ny question, the question numbe	r must be clearly
shown. $\chi^2 = 1$	22 = -1		
n+1	21+1		
	η ² †	x+1=0	
ス ² - ス-1=0		NO SOU	
n= + +	15		
1-15<2	4 4 4 15		
スと	-1		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.